Deep Learning for Observational Cosmology

What are you saying R2? We can learn cosmology?

Tomasz Kacprzak (Cosmo), Aurelien Lucchi (CS), Nathanaël Perraudin (SDSC), Janis Fluri (PhD)
Jonathan Rosenthal, Ankit Srivastava (SDSC masters students)
Thomas Hoffman, Alex Refregier, Adam Amara

SDSC projects information day, Bern 20 April 2018
Cosmology in 1 minute

- Afterglow Light Pattern 380,000 yrs.
- Dark Ages
- Development of Galaxies, Planets, etc.
- Dark Energy Accelerated Expansion
- Inflation
- Quantum Fluctuations
- 1st Stars about 400 million yrs.
- Big Bang Expansion
 13.7 billion years
Evolution of cosmic structures

credit: Ralf Kaehler
Using mass maps of the Universe to learn physics and cosmology

$\kappa_F; \ 0.2 < z < 1.3$
Cosmological parameters

amplitude of matter fluctuations

matter density (vs dark energy)

DES Collaboration (+TK) 2017 (astroph: 1708.01530)
Traditional inference

Observations → Statistics: power spectrum → Theory prediction: analytical → Cosmology measurement

\[C_l = \frac{9}{16} \left(\frac{H_0}{c} \right)^4 \Omega_m^{2} \int_0^{\chi_h} d\chi \left[\frac{g(\chi)}{a r(\chi)} \right]^2 \mathcal{P} \left(\frac{l}{r}, \chi \right) \]
Cosmological measurements with Deep Learning

low σ_8 low Ω_m

high σ_8 high Ω_m
Cosmological measurements with Deep Learning

low σ_8 low Ω_m

high σ_8 high Ω_m
Inference with Deep Learning

observations → statistics: deep convolutional network → theory prediction: simulations → cosmology measurement
Deep learning captures more information

30% increase in constraining power!

to achieve this increase with power spectrum, one would need **2x more observed area**

Fluri, TK, AL, NP et al, in prep
Inference with Deep Learning

- Observations
- Cosmology measurement
- Statistics: deep convolutional network
- Theory prediction: simulations

...
Theory prediction using simulations

N-body technique is very expensive computationally order of days for one Universe realisation
Fast simulations using Generative Adversarial Networks

Train on existing simulations
Generate new Universe in a fraction of a second on a laptop

image by AL and Andres Rodrigues
Fast simulations using Generative Adversarial Networks

problem: 3D data

by Ankit Srivastava, NP
Creating Artificial Universes using Generative Adversarial Networks

3D cubes

by Ankit Srivastava, NP
Creating Artificial Universes using Generative Adversarial Networks

3D cubes

REAL N-body

GAN generated

by Ankit Srivastava, NP
Problem: high resolution
Idea: multiscale approach
Extensions

Conditional GANs dependent on time
(Jonathan Rosenthal MSc)

Convolutions on the sphere
(np, tk, al et al, in prep)
Thank you
Problem: scaling-up GANs

Idea: multiscale approach
Deep learning captures more information

Fluri, TK, AL, NP et al, in prep
GANs: comparison of statistics

Power of Fluctuations

- Power spectrum
- Spatial separation (l)

Density Histograms

- Number of pixels
- Pixel value