BISTOM

Bayesian Parameter Inference for Stochastic Models

Started
April 1, 2018
Status
Completed
Share this project

Abstract

For a multitude of different field sciences, determining the underlying mechanistic models is important in order to further our understanding. An accurate estimation of the parameters of such mechanistic models through data can be computationally prohibitive. This project exploits neural networks in order to learn minimal and near sufficient summary statistics as latent embeddings on simulated data for multiple stochastic models. This is corroborated with sharp model parameter posteriors observed through approximate Bayesian computation experiments.

People

Collaborators

SDSC Team:
Fernando Perez-Cruz
Firat Ozdemir

PI | Partners:

Eawag, Mathematical Methods in Environmental Research:

  • Dr. Carlo Albert

More info

ZHAW, Biomedical Simulation:

  • Dr. Simone Ulzega

More info

USI, Data Science Lab:

  • Prof. Dr. Antonietta Mira

More info

Paul Scherrer Institute:

  • Prof. Dr. Christian Rüegg

More info

description

Goal:

Reliably estimating parameters of mechanistic models from data (Bayesian inference) is computationally expensive if (i) the data is big or (ii) the model is stochastic. Stochastic models are needed for reliable predictions.

Impact:

The developed methodology can be applied in many fields of science and engineering, wherever system understanding (mechanistic model) needs to be combined with data, for advancing domain knowledge and making more reliable predictions.

Solution:

Advances in algorithms as well as parallel computing infrastructure allow for Bayesian inference to be applied to a large class of stochastic models and to be scaled up to big data. We developed neural network based framework which can learn minimal and near sufficient summary statistics as latent embeddings on simulated data for multiple stochastic models. Experiments with approximate Bayesian computation yield sharp model parameter posteriors. For both stochastic models, developed solution finds near sufficient summary statistics.

Gallery

Annexe

Publications

  • Stephan Allenspach, Pascal Puphal, Joosep Link, Ivo Heinmaa, Ekaterina Pomjakushina, Cornelius Krellner, Jakob Lass, Gregory S. Tucker, Christof Niedermayer, Shusaku Imajo, Yoshimitsu Kohama, Koichi Kindo, Steffen Krämer, Mladen Horvatić, Marcelo Jaime, Alexander Madsen, Antonietta Mira, Nicolas Laflorencie, Frédéric Mila, Bruce Normand, Christian Rüegg, Raivo Stern, and Franziska Weickert. “Revealing three-dimensional quantum criticality by Sr substitution in Han purple”. Physical Review Research 3.2 (2021): 023177. doi: 10.1103/PhysRevResearch.3.023177
  • David J. Warne, Anthony Ebert, Christopher Drovandi, Wenbiao Hu, Antonietta Mira, and Kerrie Mengersen. "Hindsight is 2020 vision: a characterisation of the global response to the COVID-19 pandemic." BMC public health 20, no. 1 (2020): 1-14. doi: 10.1186/s12889-020-09972-z
  • Louis Raynal, Sixing Chen, Antonietta Mira, and Jukka-Pekka Onnela. "Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries." Bayesian Anal. Advance Publication 1 - 28, 2021. doi: 10.1214/20-BA1248
  • K. Guratinder, M. Schmidt, H. C. Walker, R. Bewley, M. Wörle, D. Cabra, S. A. Osorio, M. Villalba, A. K. Madsen, L. Keller, A. Wildes, P. Puphal, A. Cervellino, Ch. Rüegg, and O. Zaharko. "Magnetic correlations in the triangular antiferromagnet FeGa 2 S 4." Physical Review B 104.6 (2021): 064412. doi: 10.1103/PhysRevB.104.064412
  • Carlo Albert, Antonio Ferriz-Mas, Filippo Gaia, and Simone Ulzega. “Can Stochastic Resonance explain Recurrence of Grand Minima?”, The Astrophysical Journal Letters 916.2 (2021): L9. doi: 10.3847/2041-8213/ac0fd6
  • Carlo Albert, Simone Ulzega, Firat Ozdemir, Fernando Perez-Cruz, and Antonietta Mira. “Learning Summary Statistics for Bayesian Inference with Autoencoders”, SciPost Physics Core, vol. 5, no. 3, p. 043, Sep. 2022, doi: 10.21468/SciPostPhysCore.5.3.043.

Additional resources

Bibliography

Publications

Related Pages

More projects

ML-L3DNDT

Completed
Robust and scalable Machine Learning algorithms for Laue 3-Dimensional Neutron Diffraction Tomography
Big Science Data

BioDetect

Completed
Deep Learning for Biodiversity Detection and Classification
Energy, Climate & Environment

IRMA

In Progress
Interpretable and Robust Machine Learning for Mobility Analysis
No items found.

FLBI

In Progress
Feature Learning for Bayesian Inference
No items found.

News

Latest news

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data
May 1, 2024

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data

Smartair | An active learning algorithm for real-time acquisition and regression of flow field data

We’ve developed a smart solution for wind tunnel testing that learns as it works, providing accurate results faster. It provides an accurate mean flow field and turbulence field reconstruction while shortening the sampling time.
The Promise of AI in Pharmaceutical Manufacturing
April 22, 2024

The Promise of AI in Pharmaceutical Manufacturing

The Promise of AI in Pharmaceutical Manufacturing

Innovation in pharmaceutical manufacturing raises key questions: How will AI change our operations? What does this mean for the skills of our workforce? How will it reshape our collaborative efforts? And crucially, how can we fully leverage these changes?
Efficient and scalable graph generation through iterative local expansion
March 20, 2024

Efficient and scalable graph generation through iterative local expansion

Efficient and scalable graph generation through iterative local expansion

Have you ever considered the complexity of generating large-scale, intricate graphs akin to those that represent the vast relational structures of our world? Our research introduces a pioneering approach to graph generation that tackles the scalability and complexity of creating such expansive, real-world graphs.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!