Standardizing Job Titles

Job title standardization through entity alignment of knowledge graphs

Started
January 1, 2023
Status
Completed
Share this project

Abstract

The Adecco Group is one of the largest HR providers and staffing firms in the world. In order to find the best candidate for a given job vacancy, it is necessary to write precise job descriptions and to identify successful candidate profiles. Achieving this relies on curating unified and standardized job information. The focus of this project is on standardizing the terminology of job titles.

People

Collaborators

SDSC Team:
Saurabh Bhargava
Lucas Chizzali

PI | Partners:

Pencho Yordanov
Riccardo Menoli
Sarah Mathews

Giovanna Favia
Helmi Boussetta
Marco Totolo

description

Objectives

Job information is scattered across various homogeneous sources, such as ESCO or O*NET, that differ in the use of terminology and data completeness. To optimally leverage information from these sources, they must be unified and standardized.

One approach to achieving this is by representing data sources as knowledge graphs (KG) and applying a technique named “entity alignment”, which identifies nodes in different KGs that refer to the same entity (i.e. concept). KGs generally contain different types of relationships (edges) and different types of entities (nodes). Crucially though, all constructed Knowledge Graphs have one type of entity in common, namely job titles.

Examples of relationships are those identifying alternative titles (e.g. Software Architect vs Application Architect), job categories (e.g. IT professionals) or skill requirements (e.g. Python). Considering node connectivity and embeddings of job titles and their descriptions obtained from fine-tuned Natural Language Processing models, a Deep Learning model was trained to identify nodes that refer to the same job title. This hybrid approach allows to incorporate both semantic and graph-based similarity of job titles.

Benefits

Aligned job titles as identified by the developed Deep Learning model are merged and represented by a single, standardized job title. Having a standardized terminology of job titles and their descriptions allows recruiters to describe job postings and assess candidate profiles more efficiently. This ensures faster and more accurate staffing, thereby raising labor productivity.

Notes

The SDSC would like to thanks the following people at Adecco Group: Pencho Yordanov, Riccardo Menoli, Sarah Mathews, Giovanna Favia, Helmi Boussetta, Marco Totolo.

Gallery

Cover image source: SDSC

Annexe

Additional resources

Bibliography

Publications

Related Pages

More projects

SFOE Energy Dashboard

Completed
Modelling the end-user Swiss electricity consumption
Energy & Sustainability
Public sector

Enhancing resource efficiency

Completed
Data science for enhancing resource efficiency in manufacturing processes
Energy & Sustainability
Private sector

Sustainable ingredients

Completed
Leveraging AI to foster sustainable consumer goods
Energy & Sustainability
Private sector

Patterns of violence

Completed
Monitoring patterns of violence with the ICRC
Digital Society
NGO

News

Latest news

First National Calls: 50 selected projects to start in 2025
March 12, 2025

First National Calls: 50 selected projects to start in 2025

First National Calls: 50 selected projects to start in 2025

50 proposals were selected through the review processes of the SDSC's first National Calls.
AIXD | Generative AI toolbox for architects and engineers
January 22, 2025

AIXD | Generative AI toolbox for architects and engineers

AIXD | Generative AI toolbox for architects and engineers

Introducing AIXD (AI-eXtended Design), a toolbox for forward and inverse modeling for exhaustive design exploration.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!