William Aeberhard

William Aeberhard

Sr. Data Scientist
Academia
(Alumni)

William obtained a PhD in Statistics in 2015 jointly from the University of Geneva and the University of Sydney. He then worked as a post-doctoral research fellow at Dalhousie University as part of a Canadian Statistical Sciences Institute collaborative research team. He was an Assistant Professor of Statistics at Stevens Institute of Technology in Hoboken, New Jersey, before joining the SDSC in September 2020. His research interests include robust statistics, non-parametric methods, and spatio-temporal modeling. His recent cross-disciplinary collaborations involve applications in marine biology, volcanology, and fisheries science.

Projects

ArcticNAP

Completed
Arctic climate change: Exploring the Natural Aerosol baseline for improved model Predictions
Energy, Climate & Environment

MACH-Flow

Completed
Machine learning for Swiss river flow estimation
Energy, Climate & Environment

SPEEDMIND

Completed
Improving species biodiversity analyses and citizen science feedback through machine learning
Energy, Climate & Environment

Publications

Kraft, B.; Schirmer, M.; Aeberhard, W. H.; Zappa, M.; Seneviratne, S. I.; Gudmundsson, L. "CH-RUN: A data-driven spatially contiguous runoff monitoring product for Switzerland" Accepted in Hydrology and Earth System Sciences 2024 View publication
Boyd Pernov, J.; Aeberhard, W. H.; Volpi, M.; Harris, E.; Hohermuth, B.; Ishino, S.; Henne, S.; Im, U.; Quinn, P. K.; Upchurch, L. M.; et al. "Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations" Preprint 2024 View publication
Boyd Pernov, J.; Harris, E.; Volpi, M.; Baumgartner, T.; Hohermuth, B.; Henne, S.; Aeberhard, W. H.; Becagli, S.; Quinn, P. K.; Traversi, R.; et al. "Pan-Arctic Methanesulfonic Acid Aerosol: Source regions, atmospheric drivers, and future projections" npj Climate and Atmospheric Science 7 166 1-18 2024 View publication
Scolardi, K. M.; Wilkinson, K. A.; Aeberhard, W. H. "Long-term aerial monitoring of Florida manatees, Trichechus manatus latirostris, in a diverse Gulf Coast environment" Revision submitted to Endangered Species Research 2024 View publication
Dureuil, M.; Aeberhard, W. H.; Dowd, M.; Pardo, S. A.; Whoriskey, F. G.; Worm, B. "Reliable growth estimation from mark–recapture tagging data in elasmobranchs" Fisheries Research 256 106488 2022 View publication
Biass, S.; Jenkins, S. F.; Aeberhard, W. H.; Delmelle, P.; Wilson, T. "Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data" Natural Hazards and Earth System Sciences 22 9 2829-2855 2022 View publication
Iyer, S. R.; Balashankar, A.; Aeberhard, W. H.; Bhattacharyya, S.; Rusconi, G.; Jose, L.; Soans, N.; Sudarshan, A.; Pande, R.; Subramanian, L. "Modeling fine-grained spatio-temporal pollution maps with low-cost sensors" npj Climate and Atmospheric Science 5 76 1-8 2022 View publication
Boggio-Pasqua, A.; Bassos-Hull, K.; Aeberhard, W. H.; Hoopes, L. A.; Swider, D. A.; Wilkinson, K. A.; Dureuil, M. "Whitespotted eagle ray (Aetobatus narinari) age and growth in wild (in situ) versus aquarium-housed (ex situ) individuals: Implications for conservation and management" Frontiers in Marine Science 9 1-18 2022 View publication
Dureuil, M.; Aeberhard, W.; Burnett, K.; Hueter, R.; Tyminski, J.; Worm, B. "Unified natural mortality estimation for teleosts and elasmobranchs" Marine Ecology Progress Series 667 113-129 2021 View publication
Aeberhard, W. H.; Cantoni, E.; Marra, G.; Radice, R. "Robust fitting for generalized additive models for location, scale and shape" Statistics and Computing 31 11 1-16 2021 View publication
Aeberhard, W. H.; Cantoni, E.; Field, C.; Künsch, H. R.; Mills Flemming, J.; Xu, X. "Robust estimation for discrete‐time state space models" Scandinavian Journal of Statistics 48 4 1127-1147 2021 View publication

Mentioned in

Case Studies

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!