BISTOM

Bayesian Parameter Inference for Stochastic Models

Started
April 1, 2018
Status
Completed
Share this project

Abstract

For a multitude of different field sciences, determining the underlying mechanistic models is important in order to further our understanding. An accurate estimation of the parameters of such mechanistic models through data can be computationally prohibitive. This project exploits neural networks in order to learn minimal and near sufficient summary statistics as latent embeddings on simulated data for multiple stochastic models. This is corroborated with sharp model parameter posteriors observed through approximate Bayesian computation experiments.

People

Collaborators

SDSC Team:
Fernando Perez-Cruz
Firat Ozdemir

PI | Partners:

Mathematical Methods in Environmental Research:

  • Dr. Carlo Albert

More info

Biomedical Simulation:

  • Dr. Simone Ulzega

More info

Data Science Lab:

  • Prof. Dr. Antonietta Mira

More info

Director of Paul Scherrer Institute:

  • Prof. Dr. Christian Rüegg

More info

description

Goal:

Reliably estimating parameters of mechanistic models from data (Bayesian inference) is computationally expensive if (i) the data is big or (ii) the model is stochastic. Stochastic models are needed for reliable predictions.

Impact:

The developed methodology can be applied in many fields of science and engineering, wherever system understanding (mechanistic model) needs to be combined with data, for advancing domain knowledge and making more reliable predictions.

Solution:

Advances in algorithms as well as parallel computing infrastructure allow for Bayesian inference to be applied to a large class of stochastic models and to be scaled up to big data. We developed neural network based framework which can learn minimal and near sufficient summary statistics as latent embeddings on simulated data for multiple stochastic models. Experiments with approximate Bayesian computation yield sharp model parameter posteriors. For both stochastic models, developed solution finds near sufficient summary statistics.

Gallery

Annexe

Additionnal resources

Bibliography

Publications

Related Pages

More projects

ML4FCC

In Progress
Machine Learning for the Future Circular Collider Design
Big Science Data

CLIMIS4AVAL

In Progress
Real-time cleansing of snow and weather data for operational avalanche forecasting
Energy, Climate & Environment

SEMIRAMIS

Completed
AI-augmented architectural design
Energy, Climate & Environment

4D-Brains

In Progress
Extracting activity from large 4D whole-brain image datasets
Biomedical Data Science

News

Latest news

The Promise of AI in Pharmaceutical Manufacturing
April 22, 2024

The Promise of AI in Pharmaceutical Manufacturing

The Promise of AI in Pharmaceutical Manufacturing

Innovation in pharmaceutical manufacturing raises key questions: How will AI change our operations? What does this mean for the skills of our workforce? How will it reshape our collaborative efforts? And crucially, how can we fully leverage these changes?
Efficient and scalable graph generation through iterative local expansion
March 20, 2024

Efficient and scalable graph generation through iterative local expansion

Efficient and scalable graph generation through iterative local expansion

Have you ever considered the complexity of generating large-scale, intricate graphs akin to those that represent the vast relational structures of our world? Our research introduces a pioneering approach to graph generation that tackles the scalability and complexity of creating such expansive, real-world graphs.
RAvaFcast | Automating regional avalanche danger prediction in Switzerland
March 6, 2024

RAvaFcast | Automating regional avalanche danger prediction in Switzerland

RAvaFcast | Automating regional avalanche danger prediction in Switzerland

RAvaFcast is a data-driven model pipeline developed for automated regional avalanche danger forecasting in Switzerland. It combines a recently proposed classifier for avalanche danger prediction at weather stations with a spatial interpolation model and a novel aggregation strategy to estimate the danger levels in predefined wider warning regions, ultimately assembled as an avalanche bulletin.

Contact us

Let’s talk Data Science

Do you need our services or expertise?
Contact us for your next Data Science project!